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Aldose reductase (AKR1B1) is an NADPH-dependent aldo-keto reductase best known as the rate-limiting enzyme of the polyol
pathway. Accelerated glucose metabolism through this pathway has been implicated in diabetic cataract and retinopathy. Some
human tissues contain AKR1B1 as well as AKR1B10, a closely related member of the aldo-keto reductase gene superfamily.
This opens the possibility that AKR1B10 may also contribute to diabetic complications. The goal of the current study was to
characterize the expression profiles of AKR1B1 and AKR1B10 in the human eye. Using quantitative reverse transcriptase-PCR
and immunohistochemical staining, we observed expression of both AKR genes in cornea, iris, ciliary body, lens, and retina.
Expression of AKR1B1 was the highest in lens and retina, whereas AKR1B10 was the highest in cornea. Lenses from transgenic
mice designed for overexpression of AKR1B10 were not significantly different from nontransgenic controls, although a significant
number developed a focal defect in the anterior lens epithelium following 6 months of experimentally induced diabetes. However,
lenses from AKR1B10 mice remained largely transparent following longterm diabetes. These results indicate that AKR1B1 and
AKR1B10 may have different functional properties in the lens and suggest that AKR1B10 does not contribute to the pathogenesis
of diabetic cataract in humans.

1. Introduction

Diabetes mellitus is recognized as a leading cause of new
cases of blindness among Americans between the ages of
20 and 74. At least 5,000 new cases of legal blindness
result each year from diabetic retinopathy alone [1]. The
incidence of cataract is also much higher in diabetic than
in nondiabetic individuals [2]. Many theories have been
advanced to explain the pathogenesis of diabetic eye disease.
These include excess formation of advanced glycation end-
products [3], activation of PKC isoforms [4], activation of
the polyol pathway [5], and excessive oxidative stress [6].
Considerable evidence points to excess conversion of glucose
to sorbitol, mediated by aldose reductase (AKR1B1), as a
key factor in diabetic cataract formation. AKR1B1-mediated
polyol accumulation causes osmotic imbalances that lead to

fiber cell swelling, liquefaction, and eventually cataract [5].
Compelling evidence to support this hypothesis came from
Lee and coworkers, who created a transgenic mouse model
that expressed high levels of AKR1B1 in lens fiber cells [7].
These mice developed cataracts following diabetes induction,
demonstrating an essential role for AKR1B1 in mediating
high glucose-dependent cataract formation.

The role of AKR1B1 during euglycemia is still unclear.
The aldo-keto reductase (AKR) gene superfamily includes
several enzymes and proteins with similar structures and/or
enzymatic activities. The AKR1B subfamily contains two
genes that are expressed at relatively high levels in human
tissues. AKR1B1, which is equivalent to aldose reductase, is
expressed in many tissues throughout the body. AKR1B10,
which has been given the trivial names human small intestine
reductase (HSIR) and AKR1B1-like protein 1 (ARL-1), is
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also expressed in many tissues [8, 9]. Based on a blot
analysis of multiple tissue RNAs, gene transcript levels of
AKR1B10 closely parallel those of AKR1B1 [8]. The broad
catalytic similarities between AKR1B1 and AKR1B10 make
it difficult to map the distribution of these proteins in
human tissues using enzyme activity assays. The enzymes
utilize an overlapping array of substrates, and many so-called
aldose reductase inhibitors effectively block both AKR1B1
and AKR1B10 [10]. Therefore, studies conducted over 2
decades ago to demonstrate expression of AKR1B1 in tissues
of the human eye may have lacked sufficient specificity to
distinguish between these two closely related gene products
[11, 12]. In the current study, we have reexamined the
expression pattern of these enzymes, taking into account the
possibility that AKR1B10 may contribute to the aldo-keto
reductase profile of ocular tissues and thus may participate
in the pathogenesis of diabetic eye disease. The current study
also addressed the question of whether AKR1B10 contributes
to the onset and progression of cataracts in a mouse model
of diabetes.

2. Materials and Methods

2.1. Human Eyes and Specimens. Human postmortem eyes
were obtained from certified eye banks through the National
Disease Research Interchange. The time interval between
death to enucleation (<8 hours) and then to fixation (usually
8–12 hours) was rigorously controlled. Once received in
the laboratory, tissues were handled under RNAse-free
conditions. The cornea, iris, ciliary body, lens, and retinas
were carefully dissected and used to prepare protein lysates.

2.2. Quantitative Real-Time PCR (qRT-PCR). Total RNA
was extracted from human ocular tissues using an RNase
kit (Qiagen). After digesting genomic DNA using DNase I
(Roche), cDNA was synthesized from 1 μg total RNA using
Retroscript Kit (Ambion) in 20 μL volume. Quantitative
real-time PCR for AKR1B1 and AKR1B10 were done using
an iCycler iQ Detection System (Bio-Rad, Hercules, CA).
Reaction mixtures contained iQ SYBR Green Supermix (Bio-
Rad) and primers 5′for-CCCAAAGATGATAAAGGTAAT-
GCCATCGGT-3′ and 5′rev-CGATCTGGAAGTGGCTGA-
AATTGGAGA-3′ for AKR1B10, 5′for-TGAGTGCCACCC-
ATATCTCA-3′ and 5′rev-TGTCACAGACTTGGGGATCA-
3′ for AKR1B1, or 5′for-AGAAGGAGATCACTGCCCTGG-
CACC and 5′rev-CCTGCTTGCTGATCCACATCTGCTG
for β-actin. PCR condition was 1 cycle of 95◦C for 3 minutes
followed by 40 cycles at 95◦C for 20 seconds, 65◦C for 30
seconds, and 72◦C for 30 seconds. All the samples were
run in triplicate, and the results were averaged. Specific
amplification of AKR1B1, AKR1B10, and β-actin (244 bp
for AKR1B1, 133 bp for AKR1B10 and 162 bp for β-actin)
was confirmed by gel electrophoresis and melting curve
analysis after PCR. In order to compare expression patterns
among tissues, relative quantification of gene expression
was performed using the standard curve method. The
quantification data of AKR1B1 and AKR1B10 was indicated

as a relative ratio of its signal to that of β-actin to normalize
the starting amount of template cDNA.

2.3. Western Blot Analysis. Proteins were isolated from
human ocular tissues by treatment in lysis buffer (10 mM
Tris, pH 7.4, 150 mM NaCl, 1% Triton X-100, 1 mM
EDTA, pH 8.0, 1 mM EGTA, pH 7.0, 0.2 mM sodium
orthovanadate, 1 mM PMSF, 0.5% NP-40) with freshly
added aprotinin to a final concentration of 5 μg/mL. Protein
concentration was determined with the bicinchoninic acid
methods, using BSA as standard (Micro BCA Protein
Assay Kit; Pierce, Rockford, IL). Equivalent amounts of
protein (40 μg) from total cell lysates or tissue lysates
were boiled in Nupage LDS sample buffer (Invitrogen)
for 5 minutes and analyzed by 10% SDS-PAGE. Separated
proteins were transferred to Hybond-P PVDF membrane
and were blocked with TBS-0.1% Tween-20 containing 5%
nonfat milk for overnight. Membranes were incubated with
antibodies for AKR1B1 (1 : 3000) or AKR1B10 (1 : 3000
dilution), probed with horseradish peroxidase-conjugated
antirabbit secondary antibody (1 : 8000) for 2 hours, and
washed. Immune complexes were visualized with the ECL
plus system and scanned on a STORM 860 phosphorimager.
Membranes were washed and reprobed with anti-β-actin
antibody. Recombinant AKR1B1 or AKR1B10 proteins were
used as size standards.

2.4. Antibody Preparation. Antibodies to AKR1B1 and
AKR1B10 were prepared through a commercial service
(Bethyl Laboratories, Montgomery, TX). Antibodies to
human AKR1B1 were made by immunizing rabbits with
recombinant human AKR1B1, purified as described previ-
ously [13]. Antibodies to AKR1B10 were prepared using
synthetic peptides derived from AKR1B10 encompassing
residues 120 to 134 (CDDLFPKDDKGNAIGG). In both
cases, antibodies were purified by column chromatography
using the immunogen bound to a solid phase support as
the affinity ligand. Antibody specificity was verified using
purified recombinant AKR1B1 and AKR1B10 in a western
blotting format (data not shown).

2.5. Immunohistochemistry and Immunofluorescence. Im-
munohistochemical analysis for AKR1B1 and AKR1B10 was
done with the formalin-fixed, paraffin-embedded tissue.
The sections were deparaffinized in xylene, incubated for
30 minutes in methanol containing 3% H2O2 to inhibit
endogenous peroxidase activity, rehydrated through a series
of graded alcohols, and stained for AKR1B1 or AKR1B10
via the immunoperoxidase technique. The tissue was covered
with 20% inactivated normal donkey serum in Tris-buffered
saline, pH 7.6, incubated for 30 minutes at room tempera-
ture, and blotted and incubated overnight with a 1 : 500 dilu-
tion of AKR1B1 antiserum or a 1 : 500 dilution of rabbit anti-
AKR1B10 peptide antibody overnight at 4◦C. Goat antirabbit
antibody was used as a secondary antibody after 500-fold
dilution. Preimmune serum was used on sections serving
as negative controls. Immunostaining was visualized using
diaminobenzidine tetrahydrochloride (DAB), a horseradish



Journal of Ophthalmology 3

peroxidase system (Vector Laboratories, Burlingame, CA).
Sections were counterstained with hematoxylin. Areas of
positive reactivity are stained brown.

2.6. Transgenic Mice. Transgenic mice on C57BL6 back-
ground were produced for lens-enriched expression of
AKR1B10. The transgene construct was prepared by ligating
the hybrid α/δ-crystallin promoter [14] to a complete
cDNA sequence encoding AKR1B10. Further details on
the preparation and characterization of five independent
founder lines of AKR1B10 transgenic mice will be presented
elsewhere. Animals derived from founder line PAR30 used in
this study were maintained by outbreeding to the C57BL6
strain obtained from Jackson Laboratories (Bar Harbor,
ME).

2.7. Diabetes Induction. Experimental diabetes was induced
in transgenic and nontransgenic control mice by treatment
with a low-dose regimen of streptozotocin as described [15].
Fasting blood sugars were measured starting 2 weeks after
the final streptozotocin treatment and monthly after hyper-
glycemia was established. For blood sugar measurements,
animals were fasted for 6 hours prior to collection of a
drop of blood from the saphenous vein. Glucose levels were
measured immediately using a glucometer (AlphaTRAK,
Abbot Laboratories, Chicago, IL). Animals were included in
the study if fasting glucose levels were 250–350 mg/dL.

3. Results

3.1. Aldo-Keto Reductases in the Human Eye. We used a quan-
titative real-time PCR-based assay (qRT-PCR) for measuring
the expression profiles of the AKR1B1 and AKR1B10 genes in
human eye tissues. The RT-PCR method was chosen because
it provided the specificity necessary to distinguish between
AKR1B1 and AKR1B10 gene transcripts, unlike the case
with standard nucleic acid hybridization methods such as
Northern blotting.

The expression profiles for AKR1B1 and AKR1B10
mRNA levels were measured in cornea, iris, ciliary body, lens,
and retina. Data on the apparent abundance of gene-specific
transcripts were computed relative to β-actin and are shown
in Figure 1. Transcripts derived from the AKR1B1 gene are
present in all tissues examined, and are the highest in lens
followed by retina and cornea. In the case of AKR1B10 gene
transcripts, the highest transcript levels are found in cornea,
with substantially lower levels found in iris, ciliary body, lens,
and retina.

To examine the distribution of the AKR1B1 and
AKR1B10 at the protein level, we carried out immunohisto-
chemical staining of paraffin sections produced from human
eyes using affinity purified antibodies prepared as described
in Section 2. The results are shown in Figure 2 and can be
summarized as follows.

Cornea. Both AKR1B10 and AKR1B1 are expressed in the
corneal epithelium. Staining appeared to be stronger in the
basal as compared to the superficial cell layer. Intense staining
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Figure 1: Expression of AKR1B1 and AKR1B10 in human eye
tissues. Gene transcript levels were measured by quantitative real-
time PCR as described in Section 2. Data are mean ± SD among 5
nondiabetic male donors aged 65. ± 9.2 years. Data for AKR gene
transcripts levels are normalized to RT-PCR for β-actin.

for AKR1B10 was observed in the corneal stroma whereas
AKR1B1 staining was relatively limited in this region.

Lens. Staining for AKR1B1 and AKR1B10 was observed in
the lens epithelium and fiber cells located in the superficial
cortex. The staining was the greatest at the equator region
and diminished in cells located deeper in the cortex and
nucleus.

Retina. AKR1B1 and AKR1B10 stained heavily in cell nuclei
in the inner nuclear layer as well as in some ganglion cells,
especially near the perinuclear cytoplasm and inner limiting
membrane. Intense staining was also observed in the inner
and outer plexiform layers. No significant immunohisto-
chemical staining of AKR1B10 could be observed around the
retinal vessels. In all cases, no staining positivity was observed
when the primary antibody was omitted.

Transgenic Mice. Based on results from RT-PCR and
immunostaining experiments, it appears that both AKR1B1
and AKR1B10 are expressed in the human lens. To assess
whether high levels of AKR1B10 can predispose the lens
toward diabetic cataract, we produced transgenic mice
designed for overexpression of the enzyme in the lens.
As shown in Figure 3, AKR1B10 was readily detected
by western blotting of lens homogenates from transgenic
animals but was absent in nontransgenic control lenses.
Immunohistochemical staining showed intense positivity
in the outer cortical fiber cells of transgenic animals and
no detectable staining of nontransgenic controls (Figure 3).
Thus, expression of AKR1B10 in the transgenic lens had a
similar regional distribution as endogenous AKR1B10 in the
human lens. On a gross level, overexpression of AKR1B10
did not have a measureable impact on lens development, as
the wet weight and appearance of transgenic lenses was not
significantly different from nontransgenic controls (data not
shown).
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Figure 2: Immunostaining for AKR1B1 and AKR1B10 in human eye tissues. A donor eye (77-year-old male) was treated with antibodies
to AKR1B1 and AKR1B10 or preimmune control serum. Immune complexes were visualized by treatment with a horseradish peroxidase-
conjugated secondary antibody and signal developed using diaminobenzidine tetrahydrochloride (DAB) to give a brown color. Tissues
examined include cornea (a)–(c), lens (d)–(f), and retina (g)–(i). Immunostaining was particularly strong in the inner plexiform (IPL) and
outer plexiform (OPL) layers. The inner nuclear layer is shown (INL).
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Figure 3: AKR1B10 expression in the transgenic lens. (a) Western blot demonstrating expression of AKR1B10 in lens of transgenic (Tg)
mice; the characteristic band was not observed in lenses from nontransgenic (NTg) controls. Aldo-keto reductase enzyme activity in lenses
is shown below each lane. (b) and (c) Immunohistochemical stain for AKR1B10 expression in the transgenic lens.

We induced experimental diabetes in our transgenic mice
to determine if over-expression of AKR1B10 influences the
susceptibility of the mouse lens to cataracts. Both transgenic
and nontransgenic animals with and without experimental
diabetes were monitored for up to six months for the

appearance of lens opacities. In all cases, the lenses remained
essentially clear and developed only minor focal areas of light
scattering in the lens nucleus, typical of the normal aging
mouse lens [16]. A refractive abnormality localized on the
anterior epithelium was observed in 50% (3 of 6) of the
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Figure 4: Lens defect in AKR1B10 lens after long-term diabetes. (a) Brightfield microscopy of transgenic lens demonstrating light scattering
defect (arrow). (b) AKR1B10 transgenic lens showing defect at the anterior aspect of the lens (arrow). (c) Magnification of the boxed area
from panel (b). (d) Lens from nontransgenic control with equivalent duration of diabetes. Panels (b)–(d) are from toluidine blue-stained
lenses.

AKR1B10 mice with diabetes. This defect gave rise to light
scattering when viewed through a slit lamp ophthalmoscope
or after dissection and brightfield illumination (Figure 4).
Histological examination showed that this abnormality was
associated with a localized disorganization of epithelial
cells, formation of large vacuoles, and disrupted contact
between epithelial cells and the lens capsule. This defect
was not observed in age-matched nontransgenic controls
with equivalent duration of experimental diabetes (n =
4) or in nondiabetic transgenic controls (n > 6). The
epithelial defect we observed is fundamentally different from
cortical opacities that characterize the majority of diabetic
cataracts.

4. Discussion

Cataract formation is a major complication of diabetes.
Osmotic stress to lens fiber cells resulting from exces-
sive production and/or accumulation of sorbitol has been
proposed as a mechanism leading to diabetic cataracts in
humans. Varma and coworkers previously demonstrated a
strong correlation between the abundance of polyol pathway
metabolites sorbitol and fructose and blood glucose levels
in cataracts extracted from diabetic patients [17]. Our
gene expression profiling of AKR1B1 and AKR1B10 using
gene-specific RT-PCR clearly demonstrated that both of
these aldo-keto reductases are expressed not only in lens
but also in cornea, retina, and ciliary body. This raised
the possibility that diabetes-induced cataract and retinopa-
thy, as well as increased risk for glaucoma and corneal
abnormalities, may develop through multiple AKR-linked
mechanisms.

We employed a genetic strategy to determine if AKR1B10
contributes to the pathogenesis of diabetic cataract in a
mouse model. Mouse lenses contain insignificant levels of
AKR1B3, the mouse ortholog of human AKR1B1. Other
members of the AKR1B subfamily, such as AKR1B7 (major
vas deferens protein, MVDP; 18) and AKR1B8 (fibroblast
growth factor-induced protein 1; FR-1; 19), are virtually
undetectable in the mouse lens. Previous studies by Lee
et al. demonstrated that transgenic mice that overexpress

AKR1B1 in the lens develop cataracts after induction of
galactosemia or experimental diabetes [7]. Therefore, trans-
genic expression of the human AKR1B10 in the mouse
lens allowed us to assess the impact of this enzyme on
diabetic cataract formation using a transgenic mouse model
that had been validated for diabetic cataract in a previous
study.

In our diabetic animal model studies, we intentionally
sought to achieve modest (250–350 mg/dL) levels of hyper-
glycemia so as to closely mimic the situation experienced by
human patients with poorly controlled diabetes. Since the
AKR1B10 transgenic mice remained cataract-free through-
out 6 months of experimentally induced diabetes, it seems
reasonable to conclude that AKR1B10 likely has a limited role
in the pathogenesis of diabetic cataract.

5. Conclusions

Both AKR1B1 and AKR1B10 are produced in many tissues
of the eye affected by diabetes, including cornea, iris,
ciliary body, lens, and retina. Because lens transparency was
maintained in AKR1B10 transgenic mice following 6 months
of experimental diabetes, we conclude that AKR1B10 has a
limited role in the pathogenesis of cataract in human patients
with diabetes.

Acknowledgments

The authors wish to thank Belinda McMahan and Jean Jones
for assistance with immunohistochemistry, Mike Casey and
Sue Penrose for assistance with production of transgenic
mice, and Dr. Lixing Reneker (University of Missouri at
Columbia) for provision of the α/δ crystallin promoter
construct. Support for these studies was provided in part
by NEI grants EY05956 (JMP) and EY02687 (Vision core
grant to Washington University), Pearle Vision Foundation,
Research to Prevent Blindness, Inc, and a Boyscast Fellowship
(to S.Palla) from the Ministry of Science and Technology of
India.



6 Journal of Ophthalmology

References

[1] L. P. Aiello, T. W. Gardner, G. L. King, et al., “Diabetic
retinopathy,” Diabetes Care, vol. 21, pp. 143–156, 1998.

[2] P. E. Stanga, S. R. Boyd, and A. M. P. Hamilton, “Ocular
manifestations of diabetes mellitus,” Current Opinion in
Ophthalmology, vol. 10, no. 6, pp. 483–489, 1999.

[3] S. F. Yan, R. Ramasamy, and A. M. Schmidt, “The receptor for
advanced glycation endproducts (RAGE) and cardiovascular
disease,” Expert Reviews in Molecular Medicine, vol. 11, article
e9, 2009.

[4] N. Das Evcimen and G. L. King, “The role of protein kinase
C activation and the vascular complications of diabetes,”
Pharmacological Research, vol. 55, no. 6, pp. 498–510, 2007.

[5] J. H. Kinoshita and C. Nishimura, “The involvement of aldose
reductase in diabetic complications,” Diabetes-Metabolism
Reviews, vol. 4, no. 4, pp. 323–337, 1988.

[6] M. Brownlee, “The pathobiology of diabetic complications: a
unifying mechanism,” Diabetes, vol. 54, no. 6, pp. 1615–1625,
2005.

[7] A. Y. W. Lee, S. K. Chung, and S. S. M. Chung, “Demonstration
that polyol accumulation is responsible for diabetic cataract by
the use of transgenic mice expressing the aldose reductase gene
in the lens,” Proceedings of the National Academy of Sciences
of the United States of America, vol. 92, no. 7, pp. 2780–2784,
1995.

[8] D. J. Hyndman and T. G. Flynn, “Sequence and expression
levels in human tissues of a new member of the aldo-keto
reductase family,” Biochimica et Biophysica Acta, vol. 1399, no.
2-3, pp. 198–202, 1998.

[9] D. Cao, S. T. Fan, and S. S. M. Chung, “Identification and
characterization of a novel human aldose reductase-like gene,”
Journal of Biological Chemistry, vol. 273, no. 19, pp. 11429–
11435, 1998.

[10] B. Crosas, D. J. Hyndman, O. Gallego, et al., “Human
aldose reductase and human small intestine aldose reductase
are efficient retinal reductases: consequences for retinoid
metabolism,” Biochemical Journal, vol. 373, no. 3, pp. 973–979,
2003.

[11] S. A. Vinores, P. A. Campochiaro, E. H. Williams, E. E. May,
W. R. Green, and R. L. Sorenson, “Aldose reductase expression
in human diabetic retina and retinal pigment epithelium,”
Diabetes, vol. 37, no. 12, pp. 1658–1664, 1988.

[12] Y. Akagi, Y. Yajima, and P. F. Kador, “Localization of aldose
reductase in the human eye,” Diabetes, vol. 33, no. 6, pp. 562–
566, 1984.

[13] I. Tarle, B. W. Borhani, D. K. Wilson, F. A. Quiocho, and J. M.
Petrash, “Probing the active site of human aldose reductase.
Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-
110,” Journal of Biological Chemistry, vol. 268, no. 34, pp.
25687–25693, 1993.

[14] L. W. Reneker, Q. Chen, A. Bloch, L. Xie, G. Schuster,
and P. A. Overbeek, “Chick δ1-crystallin enhancer influences
mouse αA-crystallin promoter activity in transgenic mice,”
Investigative Ophthalmology and Visual Science, vol. 45, no. 11,
pp. 4083–4090, 2004.

[15] A. M. Joussen, V. Poulaki, M. L. Le, et al., “A central role
for inflammation in the pathogenesis of diabetic retinopathy,”
FASEB Journal, vol. 18, no. 12, pp. 1450–1452, 2004.

[16] C.-D. Hsu, S. Kymes, and J. M. Petrash, “A transgenic mouse
model for human autosomal dominant cataract,” Investigative
Ophthalmology and Visual Science, vol. 47, no. 5, pp. 2036–
2044, 2006.

[17] S. D. Varma, S. S. Shocket, and R. D. Richards, “Implications of
aldose reductase in cataracts in human diabetes,” Investigative
Ophthalmology and Visual Science, vol. 18, no. 3, pp. 237–241,
1979.


	Introduction
	Materials and Methods
	Human Eyes and Specimens
	Quantitative Real-Time PCR (qRT-PCR)
	Western Blot Analysis
	Antibody Preparation
	Immunohistochemistry and Immunofluorescence
	Transgenic Mice
	Diabetes Induction

	Results
	Aldo-Keto Reductases in the Human Eye
	Cornea
	Lens
	Retina
	Transgenic Mice


	Discussion
	Conclusions
	Acknowledgments
	References

